Geogrids for Roadway Applications

NDLTAP Roundtable Meeting – Killdeer ND – February 24, 2015

Tensar International Corporation

Scott Whaley, P.E. (Georgia) North Dakota Regional Manager Mandan, ND swhaley@tensarcorp.com (701) 426-8985

UPPER GREAT PLAINS TRANSPORTATION INSTITUTE NORTH DAKOTA LOCAL TECHNICAL ASSISTANCE PROGRAM

Brief History of Geotextiles & Geogrids

- Geosynthetics numerous categories based on function
 - Geotextiles textile fabrics
 - First used late 1950's in Europe
 - Became widespread in USA during 1970's
 - Geogrids open mesh, grid structure
 - Developed shortly after geotextiles began widespread use

Tensar

Tensar introduced to USA in early 1980's

Many similarities and many differences

Geotextile / Geogrid Types and Manufacturing

- Materials
 - <u>Polypropylene</u>, high-density polyethylene, polyester
 - PVC & polymer coatings
- Manufacturing processes
 - Extruded-punched-and-drawn
 - Slit film, monofilament, multifilament (yarn)
 - Woven
 - Needle punched, non-woven
 - Knit
 - Welded

Function and Performance Mechanisms Geotextiles

Tensar.

FIG. 10.—Kinematics of Unpaved Road with Geotextile

Source: Geotextile-Reinforced Unpaved Road Design – Giroud-Noiray

Function and Performance Mechanisms Geotextiles

- Load distribution
- Soil separation
- Tensioned Membrane Effect

Tensar.

"...lateral restraint has been identified as the primary reinforcement mechanism..."

Source: USACOE ETL 1110-1-189

Lateral Restraint resists aggregate particle movement under load

Lateral Restraint

- Mechanical Interlock & Lateral Confinement
 - Rib profile
 - Stiff junctions
 - Geogrid/fill compatibility
 - FHWA Guideline:

 $D_{50} \leq Aperture Size \leq 2D_{85}$

Tensar.

Source: USACOE ETL 1110-1-189

Sandbox Demonstration

CAT 733

Function and Performance Mechanisms Geogrids

"Geogrid improves the ability to obtain compaction in overlying aggregates"

Separation

This phenomenon of soil migration is called piping, and relatively simple geometrical relationships quantify whether or not distributed pore spaces within a particular aggregate fill are small enough to hold the finer soil particles of a particular subgrade in place. The concept is illustrated in Figure 3 (Cedergren, 1989).

Geogrids for Roadway Applications

Geogrid enhances:

- Stiffness and resiliency of aggregate and granular fill
- Load distribution
- Rutting resistance under repeated loads
- Bearing capacity and settlement resistance
- Separation of dissimilar soils

Geogrids for Roadway Applications

Benefits of using geogrid:

- Reduce aggregate thickness
- Reduce or eliminate undercut
- Expedite construction
- Cost-effective alternative to cement
- Improved performance relative to geotextile fabrics

Where to use:

- Beneath or within aggregate and granular fill
- Paved and unpaved roads
- Above and below utilities
- Whole roadway or isolated areas

Geogrids for Roadway Applications

Subgrade Improvement:

- Establish stable working platform
- Support construction equipment without disturbing subgrade

Tensar.

Aggregate Base Reinforcement:

- Stiffen aggregate base
- Extend roadway life
- Prevent base failure

Roadway Applications

Unpaved road

Roadway Applications

Unpaved road

PROPOSED TYPICAL SECTION

SOUTH HEART RD

STA 14+75.55 TO 336+90.75 DESIGN SPEED 55 MPH

Roadway Symmetrical about 4

Structure & utility support

Structure & utility support

Structure & utility support

Construction Entrance

Guidance Documents

U.S. Department of Transportation Federal Highway Administration Publication No. FHWA NHI-07-092 August 2008

NHI Course No. 132013

Geosynthetic Design & Construction Guidelines Reference Manual

National Highway Institute

2

Guidance Documents

Pave	
	ment Structures
AASHT	O Designation: R 50-09 ¹
1.	SCOPE
1.1.	This standard practice provides guidance to pavement designers interested in incorporating geosynfluctics for the purpose of reinforcing the aggregate base course of flexible pavement structures. Geosynthetic reinforcement is intended to provide structural support of traffic loads over the life of the pavement.
1.1.1.	For the purpose of this guide, base reinforcement is the use of a geosynfhetic within, or directly beneath, the granular base course.
1.1.2.	When referring to geosynthetics, the discussion is limited to geotextiles, geogrids, or geogrid/geotextile composites.
2.	REFERENCED DOCUMENTS
2.1.	AASHTO Standard:
	 M 288, Geotextile Specification for Highway Applications
2.2.	Other References:
	 Geosynthetics Materials Association (GMA) White Paper I—"Geosynthetics in Pavement Systems Amplications," May 1999. Available at hockstore@ifei.com
	 Geosynthetic Materials Association (GMA) White Paper II—"Geosynthetic Reinforcement the Aggregate Base Course of Flexible Pavement Structures," June 2000. Available at beoksterre@ifai.com
	 National Highway Institute (NHI) Participant Notebook—Geosynthetic Design and Construction Guidelines, April 1999. Available at www.nhi.fhwa.dot.gov.
3.	INTRODUCTION
3.1.	Because the benefits of geosynthetic reinforced pavement structures may not be derived theoretically, test sections are necessary to obtain benefit quantification. Studies have been don that demonstrate the value added by a goosynthetic in a pavement structure. These studies, necessarily limited in scope, remain the basis for design in this field.
	This standard as stins is may ampliful in actual and satisfies its analisations does be

Guidance Documents

"Use of Geogrids in Pavement Construction"

Tensar

Engineering Technical Letter (ETL) 1110-1-189 Department of the Army, US Army Corps of Engineers (USACE)

"Extruded geogrids have shown good performance when compared to other types for pavement reinforcement applications."

Geogrid's primary uses are... "(a) serve as a construction aid over soft subgrades, (b) improve or extend the pavement's projected service life, and (c) reduce the structural cross section for a given service life."

"Geogrid improves the ability to obtain compaction in overlying aggregates, while reducing the amount of material required to be removed and replaced."

"The ability of a geogrid to separate two (dissimilar) materials is a function of the gradations of the two materials."

USACE-ETL1110-1-189 Aggregate Surfaced Roads

Table 5

Reinforced Bearing Capacity Factors, Nc¹, for Aggregate-Surfaced Pavements

<u>Step 1: Determine Design Subgrade Soil Strength and Geosynthetic Applicability</u>									
CBR <u><</u> 0.5	0.5 < CB	R <u><</u> 2.0		2.0 < CBR	<u><</u> 4.0		CBR > 4.0		
Use a geotextile and a geogrid at subgrade-base interface. No aggregate thickness reduction	Both a geogrid and a geotextile are recommended. Use this design procedure for aggregate thickness			A geotextile is required for fine-grained subgrades. A geogrid may also be cost- effective. Perform a life cycle cost analysis.			Perform a cost analysis. Consider "hidden" benefits. Inadoguato		
recommended. Use TM 5-822-12 for thickness design	<u>Geotext</u> <u>ile</u> 5.0 ³	<u>Geogri</u> <u>d</u> 5.8	<u>Both²</u> 5.8	<u>Geotextil</u> <u>e</u> 5.0 ³	<u>Geogrid</u> 5.8	<u>Bot</u> <u>h</u> 5.8	data is available to determine bearing		

Tensar.

¹The unreinforced bearing capacity factor, N_c, is 2.8.

²Both a geotextile and a geogrid are recommended. The geotextile serves primarily as a separation fabric.

³Use a factor of 3.6 for conservative geotextile-reinforced pavement designs.

USACE-ETL1110-1-189 Aggregate Surfaced Roads

Tensar.

Figure 4 – Relationship between cone index, CBR, and shear strength (p. 7)

Tandem Axle Gear Weight One Layer System Tire Pressure = 80 psi

Subgrade Bearing Capacity, CN_c, psi

Tensar SpectraPave Software

Tensar.

For a detailed explanation of the design methodology used, please see the reference document 'Development and Empirical Basis of Pavement Optimization Using Tensar TriAx Geogrids', available from the Help menu above.

TriAx Pocket Card

Tensar.

Aggregate Thickness Requirements for a Typical Unpaved Applications Scenario

TriAx Pocket Card

Guide for Estimating Subgrade Soil Strengths (Fine-Grained Soils)

Estimated Consistency by:		Test by:				Correlates to:				
		Standard	Dynamic Cone Penetrometer		Shear Strength, C _u		California			
Feel	Equipment/Visual	Test (blows/ft)	SC, SM, SP	CL	СН	(psi)	(tsf)	R Value	R Value	CBR
Very Soft	Man standing sinks > 3 inches	٢2	Ι	T	Т	< 1.7	< 0.125	< 5	-	٥.4
Soft	Man walking sinks ~ 2 - 3 inches	2 - 4	1	1	-	1.7 - 3.5	0.125 - 0.25	< 5	< 0.36	0.4 - 0.8
Medium	Man walking sinks ~ 1 inch	4 - 8	-	> 2.6	-	3.5 - 6.9	0.25 - 0.50	٢5	0.36 - 2.5	0.8 - 1.6
Stiff	Pickup truck ruts ~ 1/2 - 1 inch	8 - 15	> 3.9	2.6 - 1.8	-	6.9 - 13.9	0.50 - 1.0	5 - 20	2.5 - 6.8	1.6 - 3.2
Very Stiff	Loaded dump truck ruts ~ 1 - 3 inches	15 - 30	3.9 - 2.2	1.8 - 1.3	>4.3	13.9 - 27.8	1.0 - 2.0	20 - 33	6.8 - 15.5	3.2 - 6.4
Hard	Insignificant ruts from loaded dump truck	> 30	2.2 - 1.1	1.3 - 0.9	4.3 - 2.1	> 27.8	>2.0	>33	> 15.5	>6.4

Field Test Section

Section

858

SECTION 709 GEOSYNTHETICS

709.01 DESCRIPTION

This work consists of furnishing and installing geosynthetics.

709.02 EQUIPMENT

Reserved.

C. Geosynthetic Geogrid (Type G).

Tensar.

709.03 MATERIALS

Item Geosynthetics

.

Table 858-03 Geogrid Geosynthetics

Soogina Socol Indicato							
GEOGRID PROPERTY	TEST METHOD	GEOGRID TYPE G					
Aperture Size	ID Calipered	0.5 - 1.5 inch					
Tensile Strength ¹ @ 2% Strain, lb/ft, min.	ASTM D 6637	400					
Tensile Strength ¹ @ 5 % Strain, lb/ft, min	ASTM D 6637	800					
Ultimate Tensile ¹ Strength, Ib/ft, min.	ASTM D 6637	1,300					

Table 858-03 Geogrid Geosynthetics

GEOGRID PROPERTY	TEST METHOD	GEOGRID TYPE G
Junction Strength, Ib, min.	GRI ² GG2	25
UV Resistance (After 500 hrs), % Strength Retained	ASTM D 4355	70

Strength values represent weakest principal direction

² Geosynthetic Research Institute

NDDOT 2014 Specs – Geogrid

Overlap the geogrid a minimum of 30 inches at all splices or joints. Construct joints at the end of a roll so the previous roll laps over the subsequent roll in the direction of the cover material placement. Mechanically tie transverse joints at 3 foot intervals, and longitudinal joints at 15 foot intervals. Place pins or staples at all corners and at 15 foot intervals along all edges, before placing cover material on the geogrid.

Site Preparation

- Clear and grub
- Strip topsoil and other unsuitable material if necessary
- Avoid subgrade disturbance if existing/plan grades allow
- Lightly roll or backdrag to smooth ruts

Placing and Overlapping Geogrid

- Shingle in the direction of fill placement
- Plastic or wire ties may be used to secure overlaps
 - These are non-structural, only for ease of construction
 - Most helpful on extremely soft subgrades
- Geogrid may exhibit "roll memory"
 - Pins, staples, or small piles of aggregate may be used to secure
 - Not required

Geogrid Overlaps

Summary of Tensar [®] TriAx [®] Geogrid Installation Parameters							
Subgrade Strength	Clear All Vegetation?	Geogrid Orientation ³	Geogrid Overlap ⁴	Nylon Zip Ties? ^{1, 2}	Direct Traffic? ⁵	Geotextile? ⁶	
CBR ≤ 0.5	N	TorL	3 ft	Y	N	Analysis Req'd	
0.5 <u><</u> CBR <u><</u> 2	Usually	L	2-3 ft	N	N	Analysis Req'd	
$2 \le CBR \le 4$	Y	L	1-2 ft	N	Limited	Analysis Req'd	
4≤CBR	Y	L	1ft	N	N	N	

NOTES:

1. Summary is a generalized presentation; see text for specifics.

2. Y = Yes, normally required; N = No, not normally required.

Geogrid Orientation (roll axis in relation to traffic): T = Transverse, L = Longitudinal.

4. General Geogrid Overlap Rule: Overlap = 3 ft for CBR \leq 1; Overlap = 1 ft for CBR \geq 4; interpolate between.

5. Direct Traffic pertains only to conventional rubber-tired equipment.

Analysis Required = Geotextile required only if filtration criteria is not met by aggregate fill.

Geogrid Overlaps

Fill Placement

- 6" minimum compacted thickness recommended
 - 8" recommended for CL5 / CL13 subjected to traffic
- Dump at or before edge of exposed geogrid
- Spread with dozer (preferred) or grader
- Rubber tires directly on geogrid is acceptable (avoid turning)
- No tracked equipment directly on geogrid
- Advance fill ahead and to the edges of geogrid
- Some "waving" in geogrid ahead of fill placement is normal
 - Excessive pinning and tying can create problems
- Compact using standard equipment and procedures

Spreading Aggregate

Spreading Aggregate

NORTH DAKOTA

- Bismarck
- Fargo
- Minot

