Western North Dakota Dust Control

Road Dust Institute 3rd Conference – Minneapolis, MN
February 4, 2014

William D. Anderson
Technical Support Representative, NDLTAP
515½ East Broadway, Suite 101
Bismarck, ND 58501

william.anderson.5@ndsu.edu
Oil production traffic in North Dakota.

What do North Dakota County Roads Look Like?

“Investigation of Methodologies to Control Dust on County Roads in Western North Dakota” Francis Schwindt 2012.

2013 Practices

Environmental Protection Agency AP42
An Overview of The Oil Industry
North Dakota Oil Producing Counties
Over Weight Loads in Pounds
Generator House (3) 111,180
BOP Setting Machine 111,000
Shaker Tank/Pit 122,000
Derrick 159,000
Suction Tank 131,000
VFD House 130,100
Mud Pump (2) 164,000
Mud Boat 114,380
Shaker Skid 111,760
Substructure (2) 136,000
Draw Works 130,880
Centerpiece 139,440
Hydraulic Unit 127,640
Tool Room Junk Box 124,140
BOP Skid 138,680
MCC House 145,160
Top Dog House 117,000
Crown Section 140,000
Choke Manifold 126,000

Average One-Way Truckload #s
Vertical Well - 400
Horizontal Well - 1150
Traffic per New Bakken Well
Typical North Dakota County Road
“Investigation of Methodologies to Control Dust on County Roads in Western North Dakota”
Francis Schwindt 2012.

Find links to his reports under ndltap.org\resources\dust/php
Rhinosnot – a soil stabilizer
Oil field produced salt water
Durabond – a lignin based product
Coherex – a petroleum, emulsion with resins
WISP – a synthetic organic oil
Durablend – a calcium chloride and polymer blend
Calcium Chloride
Crude oil
Magnesium Chloride

Dust Control North Dakota
Schwindt 2012
Permazyme -------------- $12,000- $16,000/ mile

Base One --------------- $0.28-$0.55/sy yd/inch of depth

Corn Oil Acrylic Resins ---- $0.14-$0.15sy yd, $16,000/ mile

Calcium Chloride ----------- $455/ton, 1.5-2lb/sq yd; $1.26/gallon

Magnesium Chloride ------- $8,000/mile (1st trmt)
 $4,900/mile (addl trmt)

Oil Field Salt Brine --------- Product is free,
 $135-$500/hr to apply

Cement ---------------------- $60,000-$250,000/mile (depending on depth)

Stabilock ---------------------- $15,000/mile

Dust Control North Dakota
Schwindt 2012
Products that provided a veneer had a limited life of dust suppression.

Soil stabilizers generally did not have a great effect in limiting dust.

Products which penetrated the aggregate surface to provide a crust had a significant effect in controlling dust.
Magnesium Chloride
Lignin
Lignin
Magnesium Chloride
Magnesium Chloride
Water
Vehicles traveling on unpaved publicly accessible roads

• $E = \{k \, (s/12)^a \, (S/30)^d\}/\{M/0.5\}^c - C$
• $E = k \, (s/12)^a \, (W/3)^b$

- E = size-specific emission factor (lb/vehicle mile traveled)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- S = mean vehicle speed (mph)
- M = surface material moisture content (%)
- C = emission factor for 1980’s vehicle fleet exhaust, brake wear the tire wear

- $k, a, b, c,$ and d are empirical constants

EPA AP42
CONSTANTS (Unpaved Road)

<table>
<thead>
<tr>
<th></th>
<th>PM 2.5</th>
<th>PM-10</th>
<th>PM-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K(lb/vmt)</td>
<td>0.18</td>
<td>1.8</td>
<td>6.0</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>d</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

EPA AP42
CONSTANTS (Unpaved Road Industrial)

<table>
<thead>
<tr>
<th></th>
<th>PM 2.5</th>
<th>PM-10</th>
<th>PM-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.5</td>
<td>1.5</td>
<td>4.9</td>
</tr>
<tr>
<td>K(lb/vmt)</td>
<td>1.5</td>
<td>1.5</td>
<td>4.9</td>
</tr>
<tr>
<td>a</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>b</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
</tbody>
</table>

EPA AP42
Particulate emissions from resuspension of loose material due to vehicle travel on a dry paved road

- \(E = k \cdot (sL)^{0.91} \cdot (W)^{1.02} \)

- \(E \) = particulate emission factor
- \(k \) = particle size multiplier for particle size range and units of interest
- \(sL \) = road surface silt loading (grams per square meter)
- \(W \) = average weight (tons) of the vehicles traveling the road
PARTICLE SIZE MULTIPLIERS FOR PAVED ROAD EQUATION

<table>
<thead>
<tr>
<th>Size Range</th>
<th>Particle size Multiplier (k)</th>
<th>g/VKT</th>
<th>g/VMT</th>
<th>lb/VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM-2.5</td>
<td>0.15</td>
<td>0.25</td>
<td>0.00054</td>
<td></td>
</tr>
<tr>
<td>PM-10</td>
<td>0.62</td>
<td>1.00</td>
<td>0.0022</td>
<td></td>
</tr>
<tr>
<td>PM-15</td>
<td>0.77</td>
<td>1.23</td>
<td>0.0027</td>
<td></td>
</tr>
<tr>
<td>PM-30</td>
<td>3.23</td>
<td>5.24</td>
<td>0.011</td>
<td></td>
</tr>
</tbody>
</table>

EPA AP42
Sample Calculation

- $E = \frac{k (s/12)^a (S/30)^d}{m/0.5^c} - C$ (unpaved)
- $E = k (s/12)^a (w/3)^b$

- 35 mph 40 tons 10% passing #200, 8% Surface Moisture Constant
- $k = 1.8, \ a = 1, \ b, d=0.5, \ c=0.2$

- $E = k (sL)^{0.91} (W)^{1.02}$ (paved)
- $k = 0.0022, \ sL = 10 \ g/m^2, \ W \ 40 \ tons$
E = \{ k (s/12)^a (S/30)^d \}/\{ m/0.5 \}^c - C \text{ (unpaved)} \quad \text{---------normal}
E = k (s/12)^a (W/3)^b \quad \text{-------------------------------------- industrial}

35 \text{ mph, 40 tons, 10\% passing #200, 6\% Surface Moisture}
Constant
k = 1.8, \ a = 1, b = , d=0.5, c=0.2

E = 0.11 \text{ lbs per vehicle mile traveled} \quad \text{--------- normal}
E = 4.1 \text{ lbs per vehicle mile traveled} \quad \text{--------- industrial}

E = k (sL)^{0.91} (W)^{1.02} \quad \text{(paved)}
\quad \text{--------- normal}
E = k = 0.0022, sL = 2 \text{ g/m}^2, W 40 \text{ tons}

E = 0.18 \text{ lbs per vehicle mile traveled}

EPA AP42
North Dakota Counties 2013

In 2013 Bowman County utilized partial funding to further document effectiveness of two products on approximately 15 miles of roadway.

Products utilized were magnesium chloride and Stabilock (soybean oil based material).

Both products were applied in August 2013.
Estimated the Magnesium Chloride reduced dust by 90%.
Estimated the Stabilock reduced dust by 80%.
(Estimates according to Neil Hofland Bowman Co. Highway Supt.)

Bowman Co. currently plans on maintaining the aggregate surfaces and reapplying these material at ¼ - ½ initial rates in spring 2014.

Surfaces are maintainable.

Also both materials act as a stabilizers. Reduces washboards, especially at intersections.
Dunn Counties was provided partial funding for Storage and application equipment for the use of salt brines from oil wells.

No equipment has currently arrived.

Tanks are due in April 2014. Application equipment is expected near the same time.
North Dakota Counties 2013

Dockter Remediation offered product for dust control on \(\frac{1}{2} \) mile of roadway to Counties in North Dakota for shipping only.

I am not aware of any application to date.
AGGREGATE MATERIALS
SUMMARY:

There are a lot of trucks driving on North Dakota roads in support of the Oil Industry.

A lot of effort has been put into dust control and it this trend is likely to continue.

We are still looking for that “magic” process and/or material to reduce and eliminate emissions at a very low cost.
Any Questions?

William D. Anderson
Technical Support Representative; NDLTAP
515½ East Broadway, Suite 101
Bismarck, ND 58501
william.anderson.5@ndsu.edu