Building a Database to Predict the Future

Brad Wentz, P.E.
Program Director
UGPTI - NDSU

33rd Annual North Central Local Roads Conference
Rapid City, SD - October 17-18, 2018
Why????

- Becker County MN Engineer
- 2008 - County Board Requests
- Brad’s rambling story....

...Critical step for effective Transportation Asset Management
TAM Summary

Transportation Asset Management

- Inventory
- Performance Assessment
- Long Range Improvement Plans and Budget
- Set Targets And Optimization
- Short Term Improvement Plans
- Performance Prediction

2018 North Central Local Roads Conference
• **Geographic Roadway Inventory Tool (GRIT)**
 - Developed by UGPTI for ND Needs Study
 - Recent upgrade to GRIT 2.0
 - Developed support agreement non-ND Counties
• **Geographic Roadway Inventory Tool (GRIT)**
 - Currently 4 Layers of Data

<table>
<thead>
<tr>
<th>Construction History</th>
<th>Construction Planning</th>
<th>Bridges</th>
<th>Load Restrictions</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Const History</td>
</tr>
<tr>
<td>Highway</td>
<td>Highway</td>
<td>Highway</td>
<td>Highway</td>
<td>Segments</td>
</tr>
<tr>
<td>Surface Type</td>
<td>Project Type</td>
<td>Type</td>
<td>Owner</td>
<td>Bituminous</td>
</tr>
<tr>
<td>Proj Type</td>
<td>Project #</td>
<td>Material</td>
<td>Func. Class</td>
<td>Seal Coat</td>
</tr>
<tr>
<td>LP Year</td>
<td>Planned Year</td>
<td>Span</td>
<td>Maintenance</td>
<td>Crack Seal</td>
</tr>
<tr>
<td>LP Depth</td>
<td>Status</td>
<td>Cell Diameter</td>
<td>Road Type</td>
<td>Patching</td>
</tr>
<tr>
<td>Total Depth</td>
<td>Bid Open Date</td>
<td>Cell Width</td>
<td>Seas. Load Limit</td>
<td>Stripping</td>
</tr>
<tr>
<td>Base Type</td>
<td>Cost</td>
<td>Cell Height</td>
<td>Seas. Gross Lmt</td>
<td>Year</td>
</tr>
<tr>
<td>Base Depth</td>
<td>Start Date</td>
<td>Length</td>
<td>YrRnd Limit</td>
<td>Cost</td>
</tr>
<tr>
<td>Base Year</td>
<td>Public Impact</td>
<td>Year Installed</td>
<td>YrRnd Gross</td>
<td>Gravel</td>
</tr>
<tr>
<td>Base Treatment</td>
<td>Restrictions</td>
<td>Cover Depth</td>
<td></td>
<td>Blading</td>
</tr>
<tr>
<td>SubGrd Strength</td>
<td>Detour</td>
<td>Replace Cost</td>
<td></td>
<td>Reravel</td>
</tr>
<tr>
<td>Treatment</td>
<td>Comments</td>
<td>Condition</td>
<td></td>
<td>Reshape</td>
</tr>
<tr>
<td>Lane Width</td>
<td>Funding Srce</td>
<td>Rating Date</td>
<td></td>
<td>Spot Repair</td>
</tr>
<tr>
<td>Shoulder Width</td>
<td>Funding Splits</td>
<td>GVV Limit</td>
<td></td>
<td>Dust Control</td>
</tr>
<tr>
<td>Grade Year</td>
<td>Fund Commit</td>
<td>Axle Limit</td>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td>Striping</td>
<td></td>
<td></td>
<td></td>
<td>Cost</td>
</tr>
<tr>
<td>Rumble Strips</td>
<td></td>
<td></td>
<td></td>
<td>Concrete</td>
</tr>
<tr>
<td>Curbs</td>
<td></td>
<td></td>
<td></td>
<td>Cracks</td>
</tr>
<tr>
<td>Inslope</td>
<td></td>
<td></td>
<td></td>
<td>CPR</td>
</tr>
<tr>
<td>ROW</td>
<td></td>
<td></td>
<td></td>
<td>Cost</td>
</tr>
<tr>
<td>Owner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Geographic Roadway Inventory Tool (GRIT)
 - Web Map viewers for all data items
 - GIS format for combining data
• Geographic Roadway Inventory Tool (GRIT)
 – GIS Web Services for all Data
• Geographic Roadway Inventory Tool (GRIT)
 - Pavement Condition Rating
- Geographic Roadway Inventory Tool (GRIT)
 - Bridge Condition Rating
Short Term Plans

- Geographic Roadway Inventory Tool (GRIT)
 - Construction Planning Layer (5 Yr Plan)
 - Created by using current measures (condition or age)
- Geographic Roadway Inventory Tool (GRIT)
 - In Viewers Overlay 5 yr plan on performance data
 - Performance data ONLY from last year
• Geographic Roadway Inventory Tool (GRIT)
 – MN LRRB Performance Prediction Project
 – Spring 2019 Completion

Goals

• Develop seamless data integration processes with MnDOT pavement condition and traffic data with GRIT inventory data.
• Develop a pavement condition forecasting module within GRIT based on the AASHTO 93 model.
• Provide on-line GIS web maps and services to prioritize roadway construction schedules and multi-year plans.
- Geographic Roadway Inventory Tool (GRIT)
 - Adding a Performance Section to the Construction History Layer
• Geographic Roadway Inventory Tool (GRIT)
 - 1st Task - combining performance data with Inventory
 - This is pavement condition data data averaged on project history
• Geographic Roadway Inventory Tool (GRIT)
 - With all inventory, planning, and Performance data geospatially combined model calculates what condition and age will be over the next 25 years.

\[
\log(W_{18}) = Z_R \times S_o + 9.36 \log(SN + 1) - 0.20 + \frac{\log(\Delta PSI)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log(M_R) - 8.07
\]

where:

- \(W_{18} \) = predicted number of 18-kip equivalent single axle load applications
- \(Z_R \) = standard normal deviate
- \(S_o \) = combined standard error of the traffic prediction and performance prediction
- \(\Delta PSI \) = difference between the initial design serviceability index, \(p_o \), and the design terminal serviceability index, \(p_t \)
- \(M_R \) = resilient modulus (psi)
- \(a_i \) = \(i^{th} \) layer coefficient
- \(D_i \) = \(i^{th} \) layer thickness (in.)
• Geographic Roadway Inventory Tool (GRIT)
 - Developing future year plans
 - BUT this time the condition and age will be for that future year
• The Final Steps of TAM
 - Setting Targets and Optimization Models
 - Output 20 year Needs and Improvements
 - Engineers and Managers generally prefer to use the data and develop their own long range plans
Building a Database to Predict the Future

This is the Database we need to build!
More Information/Resources

• See the UGPTI Website at
 – https://www.ugpti.org/
 • Resources/Asset Inventory

• Email Contacts
 – Bradley.wentz@ndsu.edu
 – Andrew.Wrucke@ndsu.edu
Building a Database to Predict the Future

Brad Wentz, P.E.
Program Director
UGPTI - NDSU