Geosynthetics Subgrade Stabilization and Base Reinforcement

Eli Cuelho, P.E.

Western Transportation Institute Montana State University October 24, 2012

College of ENGINEERING

Geosynthetic Types

- Geotextile
- Geogrid
- Geocomposite
- Geonet
- Geomembrane

Geotextiles

- <u>ASTM D4439</u>: "A permeable geosynthetic comprised solely of textiles."
- Woven geotextile
 - monofilament
 - multifilament
 - slit film tape
- Non-woven geotextile
 - needle punched
 - heat bonded

Geotextile: Woven Monofilament

College of ENGINEERING

Geotextile: Woven Multifilament

College of ENGINEERING

Geotextile: Woven Slit Film Tape

ENGINEERING

Geotextile: Nonwoven Needle Punched

College of ENGINEERING

Geotextile: Nonwoven Heat Bonded

College of ENGINEERING

Geogrid

- <u>ASTM D4439</u>: "A geosynthetic formed by a regular network of integrally connected elements with apertures greater than ¼ in. to allow interlocking with surrounding soil, rock, earth, and other materials to function primarily as reinforcement."
- Categories based on junction type:
 - Extruded geogrid
 - Bonded geogrid
 - Woven geogrid

Geogrid: Biaxial Extruded or Integrally-Formed

Geogrid: Laser Welded

College of ENGINEERING

Geogrid: Woven

College of ENGINEERING

Geocomposite

- <u>ASTM D4439</u>: "A product composed of two or more materials, at least one of which is a geosynthetic."
- Common combinations:
 - Geotextile and geonet
 - Geotextile and geogrid
 - Geotextile and drainage pipes
 - Geonet and erosion mat

Geocomposite: Geotextile/Geonet

College of ENGINEERING

Geocomposite: Geotextile/Pipe

College of ENGINEERING

Geonet

 <u>ASTM D4439</u>: "A geosynthetic consisting of integrally connected parallel sets of ribs overlying similar sets at various angles for planar drainage of liquids and gases."

Geosynthetic Functions in Pavements

1) Stabilization / Reinforcement

College of ENGINEERING

Geosynthetic Functions in Pavements

What is Stabilization?

Placement and maintenance of aggregate that serves as a stable layer for support of the remaining pavement structure

College of

ENGINEERING

Instabilities During Construction

Instabilities During Operating Life

Stabilization

College of ENGINEERING

Stabilization: Separation Function

Stabilization: Reinforcement Function

Full-Scale Field Study of Geosynthetics Used as Subgrade Stabilization

College of ENGINEERING

Background

- Problem
 - Lack of universally accepted design that uses generic geosynthetic properties
 - Understanding of which properties are most relevant
- Objective assess performance and survivability of various geosynthetics when used as subgrade stabilization
 - Weak subgrade
 - Constructed uniformly
 - Controlled traffic

RANSCEND open road to discovery research | development | testing

ENGINEERING Western Transportation Institute

00000

THE BIGGEST THING WE HAVE TO OFFER **IS ALL THE SPACE YOU NEED** 230 ACRES 4 MILES OF PAVED TEST TRACK Montana's fickle weather

www.transcendlab.org

Test Section Layout

Not to scale

Geosynthetics

WeG-1 WeG-2 IFG-3 CoG-4 IFG-5

MONTANA STATE UNIVERSITY College of ENGINEERING

Constructing Trench

Construction of Artificial Subgrade

1m

Moisture Control

Compaction

Pre and Post Trafficking Subgrade Strength

Installation of Geosynthetics

Base Course Aggregate

Well-graded gravel

- 20 cm thick based on FHWA design
- Control sections ~100 mm of rut at 45 truck passes
- Geosynthetic sections ~100 mm rut at 455 truck passes

MTL16

Grading the Base Course

Compacting the Base Course

Ready for Trafficking

Trafficking

Total weight = 46 kips (20,860 kg)
Speed = 10 mph (15 kph)

Final Layout

College of

ENGINEERING

Aller

ratio

1 1 1 1 1 1 1 1

1

Rut Measurements

- Differences in elevation as rut accumulates
- Two outermost wheel ruts in each test section
- Relate traffic passes to specific rut levels
- 1 truck pass = 2.2 traffic passes

Mean Rut Depth vs. N_{add}

Mean Rut Depth (mm)

Forensic Investigations

.

 Π

UA (

Extracting Geosynthetics

Post Trafficking Measurements

Conclusions

- All geosynthetics provided improvement when compared to controls
- Welded, woven and stronger integrally formed grids performed best
- Two textiles and weaker integrally formed grid provided significantly less benefit
- Current design methods underpredicted base layer thickness for this situation
- Tensile strength in cross-machine direction plays a significant role in rut suppression

Phase II Subgrade Stabilization Study

Objective: match geosynthetic material properties to field performance

- Pooled-fund study (9 states, MT is lead)
- 17 full-scale test sections

College of ENGINEERING

Phase II Test Section Layout

Base Reinforcement

- Improve long-term load bearing capacity
- Improve structural support
- Geosynthetics incorporated into design of road structure
- Improve roadway longevity

Application

- Tend to be lower volume roads
 - AC thickness 2 to 4 inches
 - Base thickness 8 to 16 inches
- CBR < 8
- Pavement surface distresses
 - Rutting
 - Fatigue cracking

Reinforcement placed at bottom of base layer

Structural Contribution Based on Empirical Methods

- Traffic Benefit Ratio (TBR)
 - Comparison of equivalent pavement systems
 - Ratio of load applications in reinforced sections over load applications in unreinforced sections
- Base Course Reduction Factor (BCR)
 - Comparison of equivalent traffic capacity
 - Percent reduction in base thickness

TBR

Traffic Passes

BCR

$BCR = (D_{2-U} - D_{2-R})/D_{2-U}$

with identical life

Benefit Results

- Requires comparative studies
- Typical TBRs from test sections
 - Geogrids: 1.5 to 70
 - Geotextiles: 1.5 to 10
- BCR
 - 22% to 50%

Mechanistic-Empirical Design

Geosynthetic Modeling

- Finite element model by Perkins et al. (2004)
 - Based on 2-D axisymmetric FEM contained in NCHRP Project 1-37A
 - Includes geosynthetic reinforcement
- Geosynthetic material models need constitutive properties pertinent to pavement design
 - Elastic modulus in principal strength directions (tension tests)
 - Soil-geosynthetic interaction (pullout tests)
 - In-plane Poisson's ratio (biaxial test)

Cyclic Tension Tests

• Low-strain cyclic modulus (ASTM D7556)

Cyclic Pullout Tests

Resilient interface shear modulus (ASTM D7499)

Biaxial Tension

Poisson's ratio

Practical Use of This Information

- Areas of weak subgrade material
 - Need for stable platform to build road
 - Maintain separation between layers
- Areas where gravel sources are limited or costly
- Low-volume roads experiencing increased truck traffic
- FHWA NHI Manual: Geosynthetic Design & Construction Guidelines (2008)

ENGINE

Thank you!

Presented by:

Eli Cuelho, P.E. – Western Transportation Institute

elic@coe.montana.edu | (406) 994-7886 WesternTransportationInstitute.org