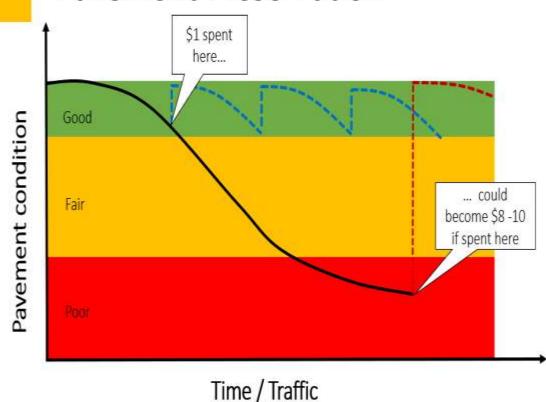
Dial in Your Chip and Shot Rate For a Successful Project

Gill Hedman

Technical Assistance Provider SDLTAP


Moving Forward 36th Annual North Central Local Roads Conference Sioux Falls, SD - October 19-21, 2021

Why Chip Seal?


- Extend service life of surfaces in good condition
- > Will retard weathering/aging of an asphalt surface
- > Will seal minor surface cracking
- Restore skid resistance to the surface

Needs More Than a Seal Coat!

Good Candidate For a Seal Coat!

Pavement Preservation

Pavement preservation is a tool used to extend public agency resources at a significant cost savings over the life of the road.

Research shows spending \$1 to preserve a road in good condition precludes spending \$8 to \$10 to reconstruct it later, after it's gone too far to maintain.

Chip Seal Design Method

What Should it Do?

- Provide an Amount of Aggregate to Cover 1 sq. yd yard a Single Stone Thick
- Provide a Starting Emulsion/Cutback Application Rate
 - Starting Rate should yield 70% embedment if there is no absorption by pavement surface
 - Must adjust for underlying pavement conditions

McLeod Chip Seal Design

- Based upon a single rock source/sample
 - Each rock source needs a design, do not assume two sources meeting the same specification are close enough
- Needs to account for traffic effects
 - Higher Traffic Volume will lower the Emulsion/Cutback rate needed to hold the rock and achieve the 70% embedment
- Account For Road Surface Conditions
 - The Rougher the Road Texture Emulsion or Cutback Rate needs to be increased due to absorption of the material into into the existing surface

Aggregate Tests & Rate Calculations

Gradation (SD202 – ND T27)

For Calculating Embedment, Average Least Dimension, and Median Aggregate Size

Loose Unit Weight [SD205]

• For Calculating Voids in the Aggregate

Specific Gravity& Absorption [SD209 & SD210 - NDT84 & NDT85]

• For Calculating Voids in the Aggregate

Flakiness Index (Flat and Elongated Particles) [SD203 – NDD4791]

• For Calculating Embedment (How high will the chips sit up when finally embedded)

Median Particle Size

 For Obtaining Chip Size from the middle of the Gradation Band (50% passing) – The more sieves used to grade the material and the more cubical the stone size equates to a more accurate design rate

Aggregate Tests & Rate Calculations (Cont)

Whip Off Factor

5% for Low Traffic, 10% for High Traffic (e.g., Low = 1+0.05 = 1.05)

Voids in Loose Aggregate [SD205]

Voids = (Loose Unit Weight (lbs./cu. Ft) / 62.4 * Specific Gravity of the Aggregate

Flakiness Index (Flat and Elongated Particles) [SD203 – ND D4791]

Calculated from Test Procedure

Average Least Dimension

H = Median Particle Size / (1.139285+(0.011506 * Flakiness Index))

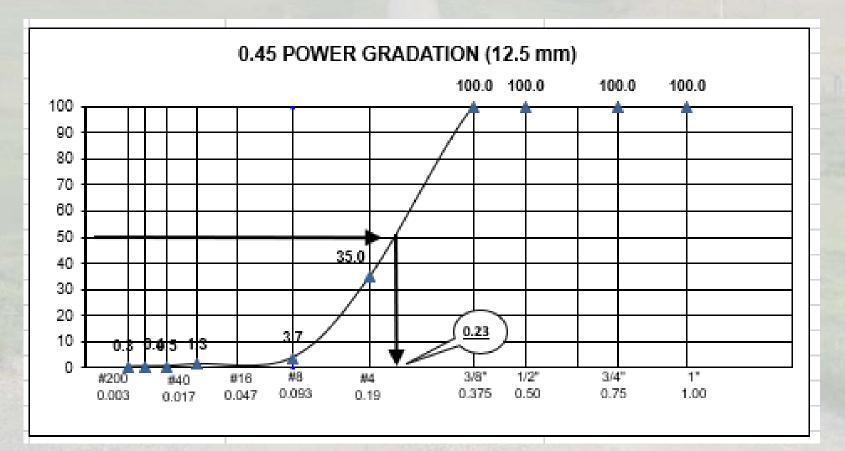
Aggregate Application Rate

C (Application Rate) = 46.8 * (1-(0.4) * Voids in Loose Aggregate * Average Least Dimension * Specific Gravity * Whip Off Factor

McLeod Emulsion Rate Calculation

Wheel Paths

 B(Gal /Sq. Yd.)=((2.244 * <u>Average Least Dimension</u> * Traffic Factor * Voids in Loose Aggregate) + Surface Condition Factor + Aggregate Absorption Factor) / Residual Asphalt Content of Emulsion/Cutback


Non-Wheel Paths

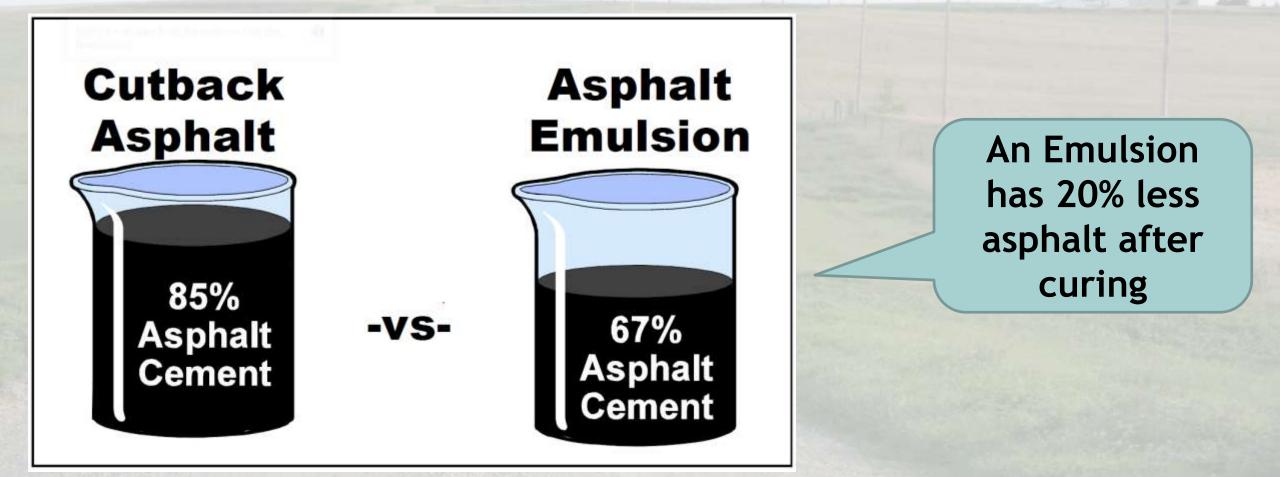
 B(Gal /Sq. Yd.)=((2.244 * <u>Median Rock Size</u>* Traffic Factor * Voids in Loose Aggregate) + Surface Condition Factor + Aggregate Absorption Factor) / Residual Asphalt Content of Emulsion/Cutback

Typical Starting Rate

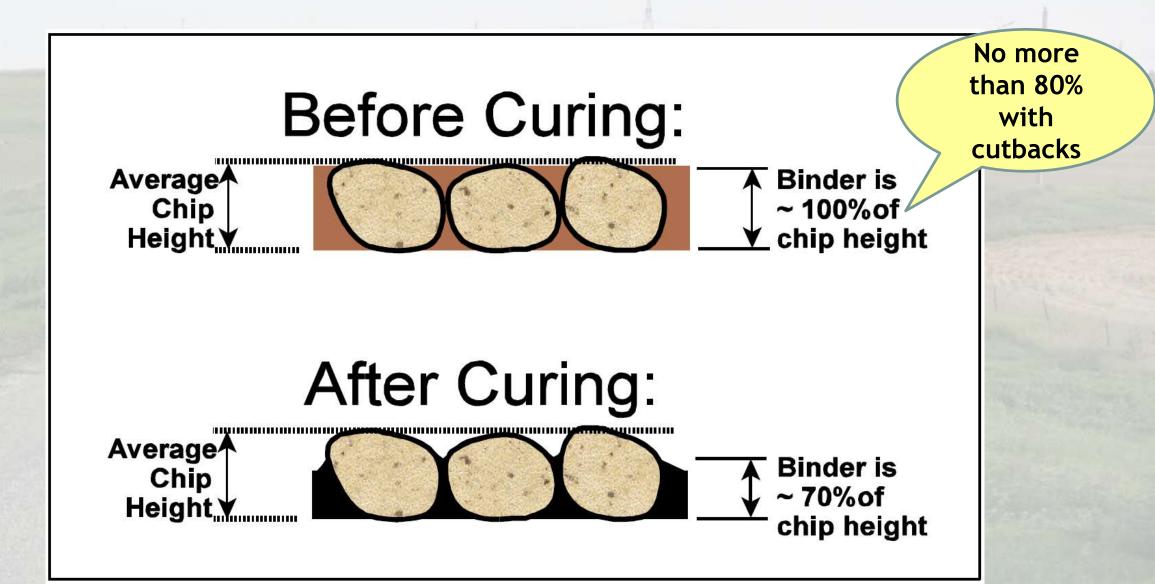
Use the Average of the Wheel Path and Non-Wheel Path for the Starting Rate

Modified McLeod Design Procedure - Gradation Analysis and Median Particle Size

Sieve Size	<u>% Passing</u>
3/8"	100
1/4"	32.9
#4	35
#8	3.7
#30	1.3
#50	0.5
#100	0.4
#200	0.3


Modified McLeod Design Procedure

Project #:	2021Pottawattamie Iowa County AST	Material Type:	LG Everist 3/8" (Stone	
Entity:	Pottawattamie	Material Source:	LG Eversit	t	
 PCN:	_	Quantity:			
Date:	08/30/2021	Description:			
s	Existing Pavement Surface Texture Correction Factor	Black Flushed = -0.01 to -0.06 Smooth Non Porous = 0.00 Slightly Porous = +0.03 Slightly Pocked, Porous, and Oxidized = +0.06 Badly Pocked, Porous, and Oxidized = +0.09	0.09	galłsy	
т	Traffic Volume	ADT <100 = 0.85 ADT 100 - 500 = 0.75 ADT 500 - 1000 = 0.70 ADT 1000 - 2000 = 0.65 ADT > 2000 = 0.60	0.75		
Α	Aggregate Absorption Factor (SD209 & SD210)	Over 1.5% = + 0.02 Over 2.0% = + 0.03 Over 2.5% = +0.04	0.02	galłsy	
G	Bulk Specific Gravity of Aggregate (SD209 & SD210)	Obtain From Materials Lab Report	2.620		
w	Loose Unit Weight (SD205)	Obtain From Materials Lab Report	81.9	lb/cu ft	
E	Traffic Whip off Factor	Portion of the Aggregate Chips that will get thrown off the roadway before Curing and Embedment (5% Low and 10% High) E=1+P/100	1.08		
R	Residual AC in Emulsion/Cutback	Obtain From Materials Lab Report	0.65		
м	Median Particle Size	Theoretical size thru which 50% of the Material Passes (From Gradation Chart)	0.23	in.	
FI	Flakiness Index (SD203)	Measure of the percentage by weight of Flat particles (Calculated from SD203 worksheet)	31.50		


Modified McLeod Design Procedure

1				A
н	Average Least Dimension	Average Least Dimension represents a reduction of the Medial Particle Size after Accounting for the Amount of Flat Particles H=M/(1.139285+(0.011506*Fl))	0.18	in.
v	Volume of Voids in Loose Aggregate (SD205)	Voids in the Loose Aggregate represents the Voids after the Aggregate Chips are Placed on the Pavement V=1-(W/(62.4*G))	0.50	
c	Aggregate Application Rate:	C=46.8(1-0.4*V)*H*G*E	19.1	lb/sq yd
B- Wheel Path Rate	Binder Rate Calculated Using Average Least Dimension	B=(2.244*H*T*V+S+A)/R	0.40	gal/sq yd
B- Non-Wheel Path Rate	Binder Rate Calculated Using Median Particle Size	B=(2.244*H*T*V+S+A)/R	0.47	gal/sq yd
Starting Point for Application In the Field		Average of Wheel Path and Non-Wheel Path Rates	0.43	gal/sq yd

Emulsion and Cutback Comparison

Proper Emulsion and Chips Embedment

Flakiness Index - Flat Chips

If the seal coat is designed for chips in the non-traffic areas:

BLEEDING

There is too much binder in the wheelpaths after the flat chips lay on their flattest side.

Asphalt Surface Treatment - Quartzite Chips With CRS-2P Emulsion

Asphalt Surface Treatment - Natural Aggregate With CRS-2P Emulsion

Asphalt Surface Treatment -Working In A Municipality

City Street Chip Sealing - Note the Dark and Light Color, This is the Appearance You Are Looking For

SD 322 - Method of Test for Determining Compatibility of Cover Aggregates

Natural Aggregate (1.2% #200) with HFMS-2P Emulsion Washed Natural Aggregate with HFMS-2P Emulsion

Severe Chip Loss

Bleeding

What Can Cause A Seal Coat To Fail?

Heavy Rain or Overly Wet Surface

Cool Temperatures - Application at 70⁰ F and Above

Dusty and or Dirty Aggregate - Compatibility

Sealing in Late Season (Especially Mid September to Freeze up)

Low Shot/Spread Rate

High Shot/Spread Rate

Not Enough Rolling

f

- Make sure pavement is <u>Clean</u> and <u>Dry</u>
- Placement
 - Place from Mid May thru August
 - A Pavement needs <u>160 Hours</u> of pavement temperatures exceeding <u>100 degrees</u> to effectively cure the chip seal
- Use Quality Materials
 - Wash the Chips to remove Dust
 - 1.0% Maximum Minus #200 Material is a Key
- Consider using a Fog Seal
- Use a Proper Application Rate for the Binder and Chips
 - Excess Chips only Causes Failure and Leads to Waste

Tips for Successful Seal Coats

Tips for Successful Seal Coats (cont.)

- Minimum distance between distributor & chip spreader
 - Aggregate must be placed before emulsion starts to break or cutbacks begin to cool and stiffen.
- Minimum of three rollers; Speed under 5 mph
 - Compaction must be completed before emulsion is broken or cutbacks cool and stiffen.
 - Rolling will drop the voids in the seal to @ 30% and achieve the 70% embedment needed for a successful project.
- Final sweeping of roadway as soon as possible.
 - No later then cool of the next morning.

• Remember that details <u>COUNT</u> and Quality does not <u>COST</u> it <u>PAYS</u>

800-422-0129

www.facebook.com/SDLTAP/

SDLTAP@sdstate.edu

www.sdstate.edu/jerome-j-lohr-engineering/ sd-local-transportation-assistance-program Location of the Minnesota DOT McLeod Design Procedure - http://www.dot.state.mn.us/materials/researchsealcoat.html

Thanks, you and if you have questions give me a call, Gill L. Hedman Technical Assistance Provider South Dakota Local Transportation Assistance Program Mobil Phone: 605-280-5525

Hedman@sdstate.edu

36th Annual North Central Local Roads Conference Sioux Falls, SD - October 19-21, 2021