Stabilized Roadways 26th Regional Local Road Conference Rapid City, South Dakota

#### October 27, 2011

#### Russell Huotari, Richland Co, Sidney MT Steve Monlux, LVR Consultants, Missoula, MT

# Outline

- Richland Co Background Information
- Approach to Solution
- Alternatives Considered
- 2009 & 2010 ~ Trial Sections
- 2011 ~ 25 Mile Project
- Summary
- Richland Co Task Force

# County 2008 Mission

- Ensure Public Safety on Road System
- Meet Public Expectations
- Address air quality and DEQ concerns
- Adhere to GRAVEL stewardship for the next generations
- Find surfacing alternatives with better cost/benefit

# The Problem

- Heavy Truck Traffic on Weak Soil Roads
- Extensive Road Network
- Limited Budget
- Limited Rock Resources

# Local Standard

- 5" Asphalt, 8" Base Gravel
- 4" Gravel (New construction)
- Spot Graveling

(Haul 90 to 110,000 cy / year)





10/30/2011

Copyright Monlux/Huotari 2011

## Weak Soils (CBR= 3 or 4 typical)



5" Asphalt, + 6" Base (15 yrs old) 3" Scoria, old gravel base (after 3 months)

#### **Richland Co Road Network & Resource Impacts**



# Road Network Miles & ADT

- Function Class Miles: 1132 (341 Bus Routes) Hot Mix: 40 Arterials: 86 Surface Treat: 10 Major/Minor Coll: 232 Gravel: 968 Local: 701 235 Dirt : Trails: 113
- CI Plan: Collectors (with) Bus Routes = 131.2 mi
  - : Improve 20-25 mi. / year
- Truck Traffic
  - Ag Traffic: Beets (Sept & Oct), Cattle, & Grain hauling
  - Oil Field:
    - Well development: 1200 trucks over 3 months (each well)
    - Crude & Water Haul: 3 to 5 trucks/day for 25 years

## Structural Thickness Design



| Risk     | Factor, % | Route Type                              |
|----------|-----------|-----------------------------------------|
| Low      | 60%       | Feeders, detour route available         |
| Moderate | 80%       | Collectors, detour route available      |
| High     | 100%      | Arterials, no detour, school bus routes |



# Approach to Solution

- Outside Assistance
  - Construction Management Contract (Century Companies)
  - Engineering Consultants (Boesh, Monlux, Holman)
- Look at all alternatives and materials available
- 2009 & 2011 ~ Build trial sections & evaluate
- 2011 ~ Project level construction with performance monitoring plan (FWD).

### 2010 Alternatives ~ Structural Support

- Improve Subgrade
  - Increased Subgrade Compaction  $\rightarrow$  minor benefit
  - Stabilization
    - Portland Cement  $\rightarrow$  Lab mix designs promising
    - **Fly Ash** → Billings & Sidney fly ash had low strengths
    - Lime  $\rightarrow$  Cement preferred for low Plasticity soils
    - Bottom Ash, Sugar Beet Lime, Enzymes, etc → unsure, inconsistent benefits
- Base Rock
  - Fabric → prevents clay contamination
  - Geogrid  $\rightarrow$  unsure benefits with high truck traffic
  - BASE 1, Enzymes, etc  $\rightarrow$  unsure, inconsistent benefits

#### **Asphalt Alternatives**



# 2010 & 2011 Soil Cement Designs

2011



| Compressive Strength   | 225 psi  | 300 psi      |
|------------------------|----------|--------------|
| Freeze Thaw Durability | Marginal | Good         |
| Flexural Strength      |          | 56% Increase |

### BST Surface on Gravel or Soil Cement?

#### **BST over 10" Gravel Base**



\$ 400,000/mile, \$2/Truck (\*)

- Water infiltration to Clay Subgrade is close to structural support area

Edge cracking & break off mtc. problems



# Thin vs. Thick Asphalt Layers

- Thin BST/Otta Seals (3/4" thick)
  - Lower costs for construction, maintenance, recycling & replacement
  - Suited for low traffic & cold climates ~
    more flexible & less cracking
  - Good wear surface, no structural strength
  - Quick failure from overloads during thaw
- Thick Asphalt Pavements (>3" thick)
  - Stronger ~ supports greater loads
  - Cracks in cold climates
- Warning Both thick & thin options must have good structural support and drainage 10/30/2011 Copyright Monlux/Huotari 2011







3⁄₄" BST

Overloads cause Failures

## Rock Used for Double BST

5/8" & 3/8" Clean Chips



Cost/Mile ≈ \$75,000 (Double Shot with Fabric) AC (PG-58-28): 0.85 gal/SY MC-3000: 0.40 gal/SY: Total Chip #/SY: 45#/SY & 27 #/SY 5/8" Gravel – Otta Seal



Cost/Mile ≈ \$60,000 (Double Shot) Total HF 125S: 0.82 gal/SY Total Gravel: 70 #/SY

10/30/2011

Copyright Monlux/Huotari 2011

## **Double BST Options**

# Otta Seal BST with Gravel





0,00,201

oopyngnemonia//riaotair.zori

# 2011 Project ~ BST on Soil Cement



# **Otta Seal Materials Specs**

#### High Float Emulsion Spec (5-4-2011)

| Requirement                                     | HF125S (Note A) |     |
|-------------------------------------------------|-----------------|-----|
| Tests on Emulsion                               | Min             | Max |
| Viscosity, Saybolt Furol, Seconds at 50° C      | 35              | 150 |
| Residue by Distillation, % by Mass              | 65              |     |
| Demulsibility, %, 50 ml 0.1 N CaCl <sub>2</sub> | 75              |     |
| Oil Portion of Distillate, volume/Mass, %       | 1.0             | 4.0 |
| Sieve Test, % by Mass                           |                 | 0.1 |
| Storage Stability Test, 24 hr, % by Mass        |                 | 1   |
| Coating Test                                    | Note B          |     |
| Coating ability & water resistance ASTM D244:   |                 |     |
| Coating, dry aggregate                          | good            |     |
| Coating, after spraying                         | fair            |     |
| Coating, wet aggregate                          | fair            |     |
| Coating, after spraying                         | fair            |     |
| Adhesion Agent, % by Weight of Residue          | Note C          |     |
|                                                 |                 |     |
| Tests on Distillation Residue                   |                 |     |
| Penetration at 25°C, 5s, 100g                   | 125             | 225 |
| Solubility Trichloroethylene % by Mass          | 97.5            |     |
| Float Test at 60°C, s                           | 1200            |     |
| Apparent Specific Gravity at 60°C, Pa.s         |                 |     |
| Ductility, 25°C, 5cm/min, cm                    | 40              |     |

#### Proposed Gradation Limits (5-4-2011)

| Siene Size | Richland Co Spec |     | MN Otta Seal Spe |     |  |
|------------|------------------|-----|------------------|-----|--|
| 316VE 3126 | Min              | Max | Min              | Max |  |
| 3/4**      |                  |     | 100              |     |  |
| 5/8"       | 100              | 100 |                  |     |  |
| 1/2"       | 82               | 94  | 84               | 100 |  |
| 3/8"       | 69               | 86  | 70               | 98  |  |
| #4         | 48               | 67  | 44               | 70  |  |
| #16        | 23               | 38  | 15               | 38  |  |
| #40        | 14               | 26  | 7                | 25  |  |
| #200       | 4                | 10  | 3                | 10  |  |

Note A: Certificate of Compliance and test reports are required.

Note B: Follow ASTM D244, except that the mixture of limestone and emulsified asphalt shall be capable of being mixed vigorously for 5 minutes, at the end of which period the stone shall be thoroughly and uniformly coated. The mixture shall then be completely immersed in tap water and the water poured off. The stone shall not be less than 90% coated.

Note C: The emulsion must include an adhesion agent and suppliers should cover costs for such in their bids. The actual amount of adhesion agent must be determined by ASTM D 244 with aggregate from the planned source after contract award."



10/30/2011

# **Preliminary Cost Comparison**

| Option     |                      | Life by FWD                   | Costs/Mile (b)   |            |              |
|------------|----------------------|-------------------------------|------------------|------------|--------------|
| Surface    | Support<br>Structure | (80,000<br>GVW trucks)<br>(a) | Construc<br>tion | Ann<br>Mtc | Per<br>Truck |
| 5" Hot Mix | 9" Base on Fabric    | 600,000                       | \$900,000        | ?          | \$1.50       |

- (a) Based on Spring 2011 FWD back-calculation, better info available in 2012 (Note that 75 Trucks/day ≈ 20,000/yr)
- (b) Costs are very project specific

# **Preliminary Cost Comparison**

| Option          |                      | Life by FWD                   | Costs/Mile (b)   |            |              |
|-----------------|----------------------|-------------------------------|------------------|------------|--------------|
| Surface         | Support<br>Structure | (80,000<br>GVW trucks)<br>(a) | Construc<br>tion | Ann<br>Mtc | Per<br>Truck |
| 5" Hot Mix      | 9" Base on Fabric    | 600,000                       | \$900,000        | ?          | \$1.50       |
| Double Chip BST | 10" Base on Fabric   | 100,000                       | \$400,000        | ?          | \$4.00(c)    |

- (a) Based on Spring 2011 FWD back-calculation, better info available in 2012 (Note that 75 Trucks/day ≈ 20,000/yr)
- (b) Costs are very project specific
- (c) Base thickness inadequate see next slide

10/30/2011

Copyright Monlux/Huotari 2011

# **Preliminary Cost Comparison**

| Option                       |                                | Life by FWD                   | Costs/Mile (b)   |            |              |
|------------------------------|--------------------------------|-------------------------------|------------------|------------|--------------|
| Surface                      | Support<br>Structure           | (80,000<br>GVW trucks)<br>(a) | Construc<br>tion | Ann<br>Mtc | Per<br>Truck |
| 5" Hot Mix                   | 9" Base on Fabric              | 600,000                       | \$900,000        | ?          | \$1.50       |
| Double Chip BST              | 10" Base on Fabric             | 100,000                       | \$400,000        | ?          | \$4.00(c)    |
| Double Chip BST<br>on Fabric |                                | 1 000 000                     | \$300,000        | ?          | \$0.30       |
| Double Otta Seal<br>BST      | 10" Soil Cement<br>(8% Cement) | 1,000,000                     | \$285,000        | ?          | \$0.29       |
| Treated Gravel               |                                | 2,000,000                     | \$400,000        | ? (d)      | \$0.20       |

- (a) Based on Spring 2011 FWD back-calculation, better info available in 2012 (Note that 75 Trucks/day ≈ 20,000/yr)
- (b) Costs are very project specific
- (c) Base thickness inadequate see next slide
- (d) Gravel replacement & treatment costs are likely high, replacement frequency variable

10/30/2011

Copyright Monlux/Huotari 2011

#### Base Thickness Requirements for BST Pavements (WSDOT - LE)

| Max Traffic<br>(80,000 GVW<br>Trucks) | Subgrade<br>Condition | Base<br>Thickness,<br>inches |
|---------------------------------------|-----------------------|------------------------------|
|                                       | Poor                  | 18                           |
| 50,000                                | Average               | 13                           |
|                                       | Good                  | 12                           |
|                                       | Poor                  | 21                           |
| 125,000                               | Average               | 16                           |
|                                       | Good                  | 12                           |
|                                       | Poor                  | 24                           |
| 250,000                               | Average               | 18                           |
|                                       | Good                  | 13                           |

WSDOT Flexible Pavement Layer Thicknesses Design Table for New or Reconstructed Pavements - LOW ESAL LEVELS

(English Version)

|               |           | Layer Thickness <sup>1</sup> (feet) |                               |                   |                               |
|---------------|-----------|-------------------------------------|-------------------------------|-------------------|-------------------------------|
|               |           | HMA S                               | urfaced                       | BST Surfaced      |                               |
| Design Period | Subgrade  | Reliabilit                          | ty = 75%                      | Reliability = 75% |                               |
| ESALS         | Condition | HMA<br>Surface<br>Course            | Crushed<br>Stone <sup>2</sup> | BST               | Crushed<br>Stone <sup>2</sup> |
|               | Poor      | 0.25                                | 0.85                          | 0.08              | 1.50                          |
| < 100,000     | Average   | 0.25                                | 0.75                          | 0.08              | 1.10                          |
|               | Good      | 0.25                                | 0.75                          | 0.08              | 0.905                         |
|               | Poor      | 0.30                                | 0.95                          | 0.08              | 1.75                          |
| 250.000       | Average   | 0.30                                | 0.70                          | 0.08              | 1.30                          |
| 200,000       | Good      | 0.30                                | 0.70                          | 0.08              | 1.00                          |
|               | Poor      | 0.35                                | 1.00                          | 0.08              | 2.00                          |
| 250,000 to    | Average   | 0.35                                | 0.65                          | 0.08              | 1.50                          |
|               | Good      | 0.35                                | 0.65                          | 0.08              | 1.10                          |

 Based on the 1993 AASHTO Guide for Design of Pavement Structures for flexible pavements with the following inputs:

| ∆PSI = 1.7            | a <sub>BST</sub> = 0.20           | Subgrade conc | dition (effective modulus):           |
|-----------------------|-----------------------------------|---------------|---------------------------------------|
| S <sub>D</sub> = 0.50 | a <sub>clushed slove</sub> = 0.13 | Poor:         | M <sub>R</sub> = 35 MPa (5,000 psi)   |
| m = 1.0               |                                   | Average:      | M <sub>R</sub> = 70 MPa (10,000 psi)  |
|                       |                                   | Good:         | M <sub>R</sub> = 140 MPa (20,000 psi) |

 Gravel borrow may be substituted for a portion of crushed stone when the required thickness of the crushed stone is at least 245 mm. The minimum thickness of crushed stone is 105 mm when such a substitution is made.

3. The assumed elastic modulus for BST (EBST) is 690 MPa (100,000 psi)

4. The assumed thickness for all BST layers is 25 mm (1 inch).

 Crushed stone thickness increased to a total pavement structure of approximately 305 mm (1.00 ft) based on moisture and frost conditions.

| Subgrade<br>Condition | Modulus<br>M <sub>R</sub> , psi | CBR |
|-----------------------|---------------------------------|-----|
| Poor                  | 5,000                           | 3.5 |
| Average               | 10,000                          | 7   |
| Good                  | 20,000                          | 13  |

10/30/2011

# BST over Base ~ Rehab Strategy (Government of Yukon)

- Rip and disc failed BST pavements
- If BST was rutting, add more base
- Rebuild BST





10/30/2011

Copyright Monlux/Huotari 2011

# Summary/Conclusions

BST and Otta seal cost less to build and maintain than hot mix **<u>if</u>** structural support and drainage are adequate

Stabilize soil if rock costs are high

Fabric under chip seal reduces cracking & increases life

Gravel stabilized with clay & chloride can be cost effective

Estimate life cycle costs

Document performance and share information



# **Richland County Task Force**

- Russ Huotari Richland Co
- Josh Johnson Interstate Engineering
- John Twedt, Troy Kelsey Century Companies
- Steve Monlux LVR Consultants

#### **Last Slide of Presentation**