ALTERNATIVES TO PAVING TO CARRY HEAVY LOADS

2010 Region Local Roads Conference
Rapid City, SD
Ken Skorseth, SDLTAP Program Manager
What are the Alternatives?

• Simply go back to gravel?
• Stabilized gravel?
• Thick base with Asphalt Surface Treatments?
 – Blotters
 – “Otta” Seals
How Big is the Problem?
What a change in 50 years!
Largest Deere tractor in 1953!

Today!
It’s not just agriculture
Is Going Back to Gravel the Right Decision?

- This decision needs very careful analysis.
- The SDDOT funded a study of surface selection for local government – completed in 2004.
- Please consider a very brief summary on the following slides ---
Local Road Surfacing Criteria Study
SDDOT Project 2002-10

• Data provided by 26 counties (120 total roadway sections)

• 20 yr life-cycle cost used in the Study.

• Three surface types analyzed:
 1. **Gravel** (Stabilized Gravel study also intended, but there was insufficient data for analysis).
 2. **Blotter** (Asphalt Surface Treatments)
 3. **Hot-mixed Asphalt** Pavement
Data summary of gravel, blotter and HMA surfaces

Agency Cost ($) vs. ADT

Data summary of gravel, blotter, and HMA surfaces.
SDDOT Project 2002-10 (Con’)

• Summary:
 – Gravel suitable up to approx 170 ADT.
 – Blotter (Asphalt Surface Treatment) suitable up to approx 650 ADT.
 – Hot-mixed Asphalt Pavement is most cost effective thereafter.
High volume traffic on common gravel surfacing – difficult for long term!

Dust problems (loss of fines) and aggregate loss combined with frequent blade maintenance makes life cycle cost very high.
Deep Layer Needed to Carry Heavy Loads

From SDDOT *Rural Road Design, Maint, & Rehab Guide*

Table 4.2. Suggested gravel layer thicknesses for new or reconstructed rural roads.

<table>
<thead>
<tr>
<th>Estimated daily no. of heavy trucks</th>
<th>Subgrade support condition¹</th>
<th>Suggested minimum gravel layer thickness, mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5</td>
<td>Low</td>
<td>165 (6.5)</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>140 (5.5)</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>115 (4.5)</td>
</tr>
<tr>
<td>25 to 50</td>
<td>Low</td>
<td>370 (14.5)</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>290 (11.5)</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>215 (8.5)</td>
</tr>
</tbody>
</table>

Notes. ¹ Low subgrade support: average CBR ≤ 3 percent; medium subgrade support: 3 percent < average CBR ≤ 10 percent; high subgrade support: average CBR > 10 percent. ² CBR = California Bearing Ratio of the in-place subgrade soils. Methods of estimating CBR are discussed in section 7 of this document.
An Alternative: Stabilized Gravel

• Long term performance has been observed by SDLTAP on two roads in SD –
 – Lawrence County
 – Brookings Township
Remarkable success with stabilized gravel

A Chloride Stabilized Road Since 1998!
Portland Cement Railcar Offloading Facility
Seven-axle portland cement hauler being loaded.

Time in: 2:05PM

Time out: 2:12PM
Less than 200 tons of gravel replaced in 12 yrs.
• Ordinary Twp road reshaped in 1998.
• Approximately 2 to 3 inches of gravel in place.
• Eight inches good quality surface gravel added.
• Liquid MgCl treatment applied after reshape each year.
Maitland Rd – Lawrence Co, SD
Heavy Residential Traffic & Continued Development
A Model of Successful Gravel Stabilization for 21 Years
Update on Deep Base & Blotter Serving an Ethanol Plant in Davison County, SD
Constructed in 2007 -
• Reconstruction w/ geotextile, 12 inches of base gravel and blotter surface.
• Was to have four inches of HMA in by 2009.
• Still remains blotter surface today.
Still carries up to 100 trucks per day
Performance overall good, but some distress is becoming a problem.
You have to build strong and deep today!

From SDDOT *Rural Road Design, Maint, & Rehab Guide*

Table 5.1. Suggested AC-Surfaced Pavement Thicknesses.

<table>
<thead>
<tr>
<th>Road classification and day in design lane</th>
<th>Subgrade</th>
<th>AASHTO</th>
<th>Aggregate base thickness (in)</th>
<th>Corresponding AC layer thickness (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium</td>
<td>3.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>2.82</td>
</tr>
</tbody>
</table>

Notes. 1Low subgrade support: average CBR$^2 \leq 3\%$; medium subgrade support: $3\% < \text{average CBR} \leq 10\%$; high subgrade support: average CBR $> 10\%$. 2CBR = California Bearing Ratio (CBR) of the in place subgrade soils. Methods of estimating the CBR of a subgrade soil are provided in section 7 of this document.

>50 heavy trucks daily require 14 inches of base with 6 inches of HMA if subgrade has at least medium strength
Otta Seals – Another Alternative

City of Pierre, SD.
Performance has been good thus far.
Soy Oil Processing Byproduct – Dust Palliative
AgFirst Grain Elevator in Aurora, SD
Otta Seal in Becker County, MN
Good performance for six years
Caution on Blotter/Otta Seal Construction

• Only works on deep base and stable subgrade.

• How deep?
 – Depends on truck traffic and subgrade soil condition.
 – Could require up to 20 inches of base depth!