Strengthening Base instead of Paving:

Regional Local Road Conference Rapid City, South Dakota October 21 & 22, 2009

OVERVIEW

ROAD TYPES BASE STRENGTHENING APPLIES TO ALL KEY CONSIDERATIONS for SUCCESS PAVEMENT ASSESSMENT REHAB SELECTION ASSURE PERFORMANCE QUESTIONS/COMMENTS

ROAD TYPES

■ GRAVEL

• What are my current costs? • What are my future needs? RURAL HMA Staged construction/perpetual pavents URBAN HMA Adding strength to existing design ■ INTERSTATE HMA – Mn/Road

GRAVEL (Unpaved)

Lincoln Highway between Ames and Nevada, 1918. (Courtesy: Iowa State Highway Commission)

Traffic's effect on maintenance costs/mile

- Roads grouped by traffic volumes and surface type
- An increase in traffic should lead to an increase in maintenance costs, particularly for gravel roads
 - More gravel needed
 - More blading and smoothing of road surface needed

Cumulative maintenance costs/mile over time for a gravel road

Time (years)

RURAL HMA (Limited Design)

- Limited Pavement and Mix Design
 - Pavement designs assume stronger base
 - Mix designs were economized
 - Performance suffers as expectations rise >
- Staged Construction options
 - Rehab economics
- Perpetual Pavement Design Goal
 Current research providing more tools

Interstate Expectations

1970 1975 1980 1985 1990 1995 2000 2005

Staged Construction options

Granular pavement needing upgrading

Bituminous pavement needing repair

GBS

Overlay 6-10 inch stabilized material

Granular base

— Soil

FDR

Perpetual Pavement Design Goal

Proper roadway/pavement assessment
Selection of best rehab option
Selection of process and materials
Best Practices Construction (manage risk)
Lowest Life Cycle Cost (LLC)
Optimized Performance (safety,ride,durability)

URBAN HMA

INTERSTATE HMA Mn/Road – I 94

Cell 2
50% RAP
Cell 3
75% RAP
Cell 4
100% RAP

Mn/Road – I 94

Base Stabilization Cells 2,3,4

CELL	50%	6 inch	4%
2	RAP	Stab.	EE
CELL	75%	6 inch	3%
3	RAP	Stab.	EE
CELL	100%	8 inch	.075%
4	RAP	Stab.	EE
SHLD	50%	4 inch	4.5%
	RAP	Stab.	EE

KEY CONSIDERATIONS

- What are short and long term plans for road?
- What Roadway History information is available?
- Do I know the root cause of pavement issues?
 What options fit my desired result?
 What additional information do I need to evaluate my options?
 Where can I go for help?

Where can I go for help?

Asphalt Recycling and Reclaiming Association ARRA – <u>www.arra.org</u>

Pavement Interactive Website - <u>www.pavementinteractive.org</u>

National Asphalt Pavement Association NAPA – <u>www.hotmix.org</u>

National Center for Pavement Preservation NCPP - <u>www.pavementpreservation.org</u>

Transportation Engineering and Road Research Alliance TERRA – <u>www.terraroadalliance.org</u>

Federal Highway Administration FHWA – <u>www.fhwa.dot.gov/pavement</u>

Rehabilitation Selection BARM

Pavement Distress Mode	Candidate Rehabilitation Techniques								
	СР	HIR	CIR	Thin HMA	Thick HMA	FDR	Combination Treatments	Reconstruction	
Raveling									
Potholes				[1		
Bleeding									
Skid Resistance	l l l l l l l l l l l l l l l l l l l								
Shoulder Drop Off									
Rutting									
Corrugations									
Shoving									
Fatigue Cracking									
Edge Cracking		<u> </u>							
Slippage Cracking									
Block Cracking									
Longitudinal Cracking				<u> </u>					
Transverse Cracking				<u> </u>					
Reflection Cracking	├ ──								
Discontinuity Cracking	<u> </u>						-		
Swells									
Bumps						-			
Sags				<u> </u>					
Depressions									
Ride Quality			_		_				
Strength									
		1		1		1			
	Most					6	Least		
}	Appropriate	e					Appropriate		

Pavement Assessment Keys to Success

Determine the Root Cause

 Springtime (preferred) structural evaluation by agency or consulting engineer

- Structure; layer evaluations
- Drainage
- Distresses
- Road needs

Dynamic Cone Penetrometer (DCP) Pavement and Material Assessment Keys to Success

Strength testing options to identify weak areas and determine subgrade strength/modulus:
Falling Weight Deflectometer (FWD)
California Bearing Ratio (CBR) or R-Value
Dynamic Cone Penetrometer (DCP)
Proof rolling (granular surfaces only)

Pavement Assessment Pavement Condition/Distress Survey

> Pavement Condition Data can be collected either **Manually** or with **Automated** equipment.

Pavement Assessment Pavement Strength Evaluation
Ground Penetrating Radar (GPR) Data
Provides a "picture" of pavement structure
Used for FWD Analysis

Pavement Assessment Pavement Strength Evaluation

Pavement Assessment Surface, Base and Subgrade Analysis

Coring

 Determination of pavement thickness, layering, condition of each layer, bonding between layers, presence of materials related to distress and strength

Soil Borings/GPR

 Thickness, type or classification, moisture content, contamination, strength determination

Pavement and Materials Assessment Approximate Costs

Coring - \$1,000 to \$1,500 (per project < 2 miles)</p>

Soil / pavement borings ~\$1,000 (per mile)

■ FWD w/ analysis - \$2,000 to \$5,000 (per project < 2 miles)

Sampling & subgrade testing - \$2,500 (per project < 2 miles)</p>

DCP - equipment costs \$1,500 (per project < 2 miles)</p>

Costs will vary depending on many factors, especially mobilization and traffic control

REHAB SELECTION

Review pavement history Typical sections Existing distress and root cause of the problem Identify Rehab Options ■ CIR ■ FDR Material Considerations Select for Success (I have done my homework)

CIR (Train Method)

Pavement In-Place Recycling from Roadtec

CIR (w/o Train)

Cold In-place Recycling (CIR) Fundamentals of CIR

Conventional No mix design 2% Emulsion QC requirements Two gradations per day 100% passing 1-1/2" • 90-100% passing 1" Control strip

 Engineered
 Defined sampling protocol

- Engineered design
- Performance-related specs
- Early strength & long term durability

Cold In-place Recycling (CIR) Mix Design

RAP/Base Analysis

Foamed Asphalt, Engineered Emulsion and Fly Ash

Field cores crushed to 3 gradation bands

A design made for at least 2 gradations

Cold In-place Recycling (CIR) Engineered CIR

Less Raveling – Lab & Field

Conventional CIR 25.7% mass loss

Raveling in the field

Samples & field photos from CSAH No. 20, Blue Earth County, MN

Engineered CIR

1.6% loss

Full Depth Reclamation (FDR)

Full Depth Reclamation (FDR) Types of FDR

- Mechanical stabilization FDR without addition of binder (Pulverization)
- Chemical stabilization FDR with chemical additive (Calcium or Magnesium Chloride, Lime, Fly Ash, Kiln Dust, Portland Cement, etc.)
- Bituminous stabilization FDR with asphalt emulsion, emulsified recycling agent, or foamed/expanded asphalt additive

Full Depth Reclamation (FDR) Types of FDR Additives Used in Recycling

Full Depth Reclamation (FDR) Keys to Success

- Pavement & material assessment
- Engineered mix design
 - Choose correct additive for the application
- Performance-related specifications
- Construction guidelines & QC specs

Engineered Mix Design

Engineered Mix Design Virgin aggregate or RAP may be needed To increase depth of finished structural layer To improve gradation Cleanliness (P200) Material quality Grading

Add rock

Stabilization Considerations Pronetono

Surface

Proneto

Stiff

Full Depth Reclamation (FDR) What is FDR?

Bituminous pavement needing repair

FDR Example

Overlay 6-10 inches stabilized material Granular base

- Soil

Construction and Quality Control Corrective actions Sub-cut & replace weak spots Fix drainage Fix thickness deficiency Add rock Widen Cut out soil

Construction and Quality Control

- Equipment
 - Reclaimer
 - Padfoot compactor
 - Motor grader
 - Water truck
 - Finishing Rollers

3 C's to evaluate new technology

Constructability

Cost

Credibility

Constructability About the same as HMA but you need to manage the weather

About the same as HMA but you need to manage the market

 Managing the market is much easier than the weather

Credibility Engineered Emulsion is a product I will always endorse but you need to manage the process. Process is very easy to manage but you need to have credibility which only comes with success

Where can I go for help?

Asphalt Recycling and Reclaiming Association ARRA – <u>www.arra.org</u>

Pavement Interactive Website - <u>www.pavementinteractive.org</u>

National Asphalt Pavement Association NAPA – <u>www.hotmix.org</u>

National Center for Pavement Preservation NCPP - <u>www.pavementpreservation.org</u>

Transportation Engineering and Road Research Alliance TERRA – <u>www.terraroadalliance.org</u>

Federal Highway Administration FHWA – <u>www.fhwa.dot.gov/pavement</u>

Thank you.

Questions?